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Measurement of the Instantaneous
Velocity of a Brownian Particle

Tongcang Li, Simon Kheifets, David Medellin, Mark G. Raizen*

Brownian motion of particles affects many branches of science. We report on the Brownian motion
of micrometer-sized beads of glass held in air by an optical tweezer, over a wide range of pressures,
and we measured the instantaneous velocity of a Brownian particle. Our results provide direct
verification of the energy equipartition theorem for a Brownian particle. For short times, the
ballistic regime of Brownian motion was observed, in contrast to the usual diffusive regime. We
discuss the applications of these methods toward cooling the center-of-mass motion of a bead in

vacuum to the quantum ground motional state.

which he considered the instantaneous ve-

locity of a Brownian particle (/, 2). By mea-
suring this quantity, one could prove that “the
kinetic energy of the motion of the centre of grav-
ity of a particle is independent of the size and
nature of the particle and independent of the
nature of its environment.” This is one of the
basic tenets of statistical mechanics, known as
the equipartition theorem. However, because of
the very rapid randomization of the motion,
Einstein concluded that the instantaneous veloc-
ity of a Brownian particle would be impossible to
measure in practice.

We report here on the measurement of the
instantaneous velocity of a Brownian particle in a
system consisting of a single, micrometer-sized
Si0, bead held in a dual-beam optical tweezer in
air, over a wide range of pressures. The velocity
data were used to verify the Maxwell-Boltzmann
velocity distribution and the equipartition theorem
for a Brownian particle. The ability to measure
instantaneous velocity enables new fundamental
tests of statistical mechanics of Brownian par-
ticles and is also a necessary step toward the cool-
ing of a particle to the quantum ground motional
state in vacuum.

The earliest quantitative studies of Brownian
motion were focused on measuring velocities,
and they generated enormous controversy (3, 4).

In 1907, Albert Einstein published a paper in
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*To whom correspondence should be addressed. E-mail:
raizen@physics.utexas.edu

The measured velocities of Brownian particles
(3) were almost 1000-fold smaller than what was
predicted by the energy equipartition theorem.
Recent experiments with fast detectors that studied
Brownian motion in liquid (5—7) and gaseous
(8-10) environments observed nondiffusive mo-
tion of a Brownian particle.

Einstein’s theory predicts that ([Ax(r)]?) =
2Dt, where ([Ax(£)]*) is the mean square displace-
ment (MSD) in one dimension of a free Brown-
ian particle during time ¢, and D is the diffusion
constant (/7). The diffusion constant can be cal-
culated by D = kgT/y, where kg is Boltz-
mann’s constant, 7 is the temperature, and vy is
the Stokes friction coefficient. The mean veloc-
ity measured over an interval of time ¢ is v =

V{([Ax()?)t = /2D/\/t. This diverges as ¢ ap-

Fig. 1. Simplified schematic
showing the counterpropa-
gating dual-beam optical
tweezers, and a novel detec-
tion system that has a 75-MHz
bandwidth and ultralow noise.
The s-polarized beam is re-
flected by a polarizing beam-
splitter cube after it passes
through a trapped bead inside
a vacuum chamber. For detec-
tion, it is split by a mirror with
a sharp edge. The p-polarized
beam passes through the cube.

s-polarized

Detector

proaches 0 and therefore does not represent the
real velocity of the particle (7, 2).

The equation ([Ax(£)]*) = 2Dt, however, is
valid only when ¢ >> 1,; that is, in the diffusive
regime. Here, 1, = m/y is the momentum relaxa-
tion time of a particle with mass m. At very short
time scales (¢ << 1), the dynamics of a particle are
dominated by its inertia, and the motion is ballistic.
The dynamics of a Brownian particle over all time
scales can be described by a Langevin equation
(12). The MSD of a Brownian particle at very
short time scales is predicted to be ([Ax(1)]*) =
(kg T/m)t?, and its instantaneous velocity can be
measured as v = Ax(¢) /¢, when t << 1, (13).

For a 1-um-diameter silica (SiO,) sphere in
water, T, is about 0.1 pis and the root mean square
(rms) velocity is about 2 mm/s in one dimension.
To measure the instantaneous velocity with 10%
uncertainty, one would require 2-pm spatial res-
olution in 10 ns, far beyond what is experimen-
tally achievable today (7). Because of the lower
viscosity of gas, compared with liquid, the 7, of a
particle in air is much larger. This lowers the
technical demand for both temporal and spatial
resolution. The main difficulty of performing high-
precision measurements of a Brownian particle in
air, however, is that the particle will fall under the
influence of gravity. We overcome this problem
by using optical tweezers to simultaneously trap
and monitor a silica bead in air and vacuum, al-
lowing long-duration, ultra—high-resolution mea-
surements of its motion.

Vacuum
Chamber

p-polarized

s-polarized
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For small displacements, the effect of optical
tweezers on the bead’s motion can be approxi-
mated by a harmonic potential. The MSD of a
Brownian particle in an underdamped harmon-
ic trap in air can be obtained by solving the
Langevin equation (/4)

([Ax()) =
Lsz {1 — (cos ot + s mll)}
mayg 2011,

(1)

where ®, is the resonant frequency of the trap

and o=/} — 1/(217],)2. The normalized veloc-

ity autocorrelation function (VACF) of the par-
ticle is (/4)

i t
y(t) = e /*® (cos oyt — S o1 ) (2)

2017

In the simplified scheme of our optical trap
and vacuum chamber (Fig. 1), the trap is formed
inside a vacuum chamber by two counterpropa-
gating laser beams focused to the same point by
two identical aspheric lenses with focal lengths
of 3.1 mm and numerical apertures of 0.68 (15).
The two 1064-nm-wavelength laser beams are
orthogonally polarized, and their frequencies dif-
fer by 160 MHz to avoid interference. The scat-
tering forces exerted on the bead by the two
beams cancel, and the gradient forces near the
center of the focus create a three-dimensional
harmonic potential for the bead. When the bead
deviates from the center of the trap, it deflects
both trapping beams. The position of the bead is

T

80/ 80F '
= 99.8 kPa | B f 2.75 kPa |
£ 40 /v\/\/ 40} [
[
O 0+ 0 /\f ,\'V
% o) M AWV \/
a
-80- : -80+ :
w C 99.8 kPa 2.75 kPa
e 11 1
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= 01 Okthsd
: M/W\
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>
0 1 0 1 2
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Fig. 2. One-dimensional trajectories of a 3-um-diameter silica bead trapped in air at 99.8 kPa (A) and
2.75 kPa (B). The instantaneous velocities of the bead corresponding to these trajectories are shown in (C)

and (D).

Fig. 3. (A)TheMSDsofa A
3-um silica bead trapped

monitored by measuring the deflection of one of
the beams, which is split by a mirror with a sharp
edge. The difference between the two halves is
measured by a fast balanced detector (7, 6).

The lifetime of a bead in our trap in air is much
longer than our measurement times over a wide
range of pressures and trap strengths. We have
tested it by trapping a 4.7-um bead in air con-
tinuously for 46 hours, during which the power
of both laser beams was repeatedly changed from
5 mW to 2.0 W. The trap becomes less stable in
vacuum. The lowest pressure at which we have
trapped a bead without extra stabilization is about
0.1 Pa.

For studying the Brownian motion of a trapped
bead, unless otherwise stated, the powers of the
two laser beams were 10.7 and 14.1 mW (/5), the
diameter of the bead was 3 um, the temperature
of the system was 297 K, and the air pressure was
99.8 or 2.75 kPa. The trapping was stable and the
heating due to laser absorption was negligible un-
der these conditions. In typical samples of position
and velocity traces of a trapped bead (Fig. 2), the
position traces of the bead at these two pressures
appear to be very similar. On the other hand, the
velocity traces are clearly different. The instanta-
neous velocity of the bead at 99.8 kPa changes
more frequently than that at 2.75 kPa, because
the momentum relaxation time is shorter at higher
pressure.

Figure 3 shows the MSDs of a 3-um silica
bead as a function of time. The measured MSDs
fit with Eq. 1 over three decades of time for both
pressures. The calibration factor o = position/
voltage of the detection system is the only fit-
ting parameter of Eq. 1 for each pressure. 1, and
g are obtained from the measured normalized
VACF. The two values of o obtained for these
two pressures differ by 10.8%. This is because
the vacuum chamber is distorted slightly when
the pressure is decreased from 99.8 to 2.75 kPa.
The measured MSDs are completely different
from those predicted by Einstein’s theory of
Brownian motion in a diffusive regime. The

in air at 99.8 kPa (red I
square) and 2.75 kPa
(black circle). They are
calculated from 40 mil-
lion position measure- «_
ments for each pressure. =
The “noise” signal (blue ~—
triangle) is recorded when %
there is no partice in the =< ]
optical trap. The solid lines 1 1
are theoretical predictions 3
of Eq. 1. The prediction of
Einstein's theory of free
Brownian motion in the
diffusive regime is shown
in dashed lines for com-
parison. (B) MSDs at short

time scales are shown in detail. The dash-dotted line indicates ballistic Brownian motion of a free particle.
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Fig. 4. (A) The distribu-

>

v e}

tion of the measured in-
stantaneous velocities of
a 3-um silica bead. The
statistics at each pressure
is calculated from 4 mil-
lion instantaneous veloc-
ities. The solid lines are
Maxwell-Boltzmann dis-
tributions. We obtained
Vims = 0.422 mm/s at
99.8 kPa (red square)
and Vs = 0.425 mm/s
at 2.75 kPa (black circle)

Normalized counts

Normalized VACF

b 0 99.8kPa R,
o 2.75kPa Y ]
A noise

from the measurements.
The rms value of the noise
(blue triangle) is 0.021
mmy/s. (B) The normalized

o 1 2
Velocity (mm/s)
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1.0

velocity autocorrelation functions of the 3-um bead at two different pressures. The solid lines are fittings with Eq. 2.

slopes of measured MSD curves at short time
scales are double those of the MSD curves of
diffusive Brownian motion in the log-log plot
(Fig. 3A). This is because the MSD is propor-
tional to ¢ for ballistic Brownian motion, whereas
it is proportional to ¢ for diffusive Brownian mo-
tion. In addition, the MSD curves are indepen-
dent of air pressure at short time scales, which
is predicted by ([Ax(1)]*) = (ksT/m)7* for bal-
listic Brownian motion, whereas the MSD in the
diffusive regime does depend on the air pressure.
At long time scales, the MSD saturates at a con-
stant value because of the optical trap. Figure 3B
displays more detail of the Brownian motion at
short time scales. It clearly demonstrates that we
have observed ballistic Brownian motion.

The distributions of the measured instanta-
neous velocities (Fig. 4A) agree very well with
the Maxwell-Boltzmann distribution. The mea-
sured rms velocities are vy, = 0.422 mm/s at
99.8 kPa and v, = 0.425 mm/s at 2.75 kPa.
These values are very close to the prediction of the
energy equipartition theorem, vy, = Vkg1/m,
which is 0.429 mmy/s. As expected, the velocity
distribution is independent of pressure. The rms
value of the noise signal is 0.021 mm/s, which
means we have 1.0 A spatial resolution in 5 ys.
This measurement noise is about 4.8% of the rms
velocity. Figure 4A represents direct verification
of the Maxwell-Boltzmann distribution of veloc-
ities and the equipartition theorem of energy for
Brownian motion. For a Brownian particle in
liquid, the inertial effects of the liquid become im-
portant. The measured rms velocity of the particle
will be vims = kg T/m* in the ballistic regime,
where the effective mass m* is the sum of the mass
of the particle and half of the mass of the displaced
fluid (/7). This is different from the equipar-
tition theorem. To measure the true instantaneous
velocity in liquid as predicted by the equiparti-
tion theorem, the temporal resolution must be
much shorter than the time scale of acoustic
damping, which is about 1 ns for a 1-um particle
in liquid (17).

Figure 4B shows the normalized VACF of
the bead at two different pressures. At 2.75 kPa,

one can see the oscillations due to the optical
trap. Equation 2 is independent of the calibration
factor o of the detection system. The only in-
dependent variable is time ¢, which we can mea-
sure with high precision. Thus the normalized
VACF provides an accurate method to measure
1, and . By fitting the normalized VACF with
Eq. 2, we obtained 1, = 48.5 + 0.1 ps, 0 = 27 -
(3064 + 4) Hz at 99.8 kPa and 1, = 147.3 +
0.1 ps, 0y = 2w - (3168 = 0.5) Hz at 2.75 kPa.
The trapping frequency changed by 3% because
of the distortion of the vacuum chamber at dif-
ferent pressures. For a particle at a certain pres-
sure and temperature, 1, should be independent
of the trapping frequency. We verified this by
changing the total power of the two laser beams
from 25 to 220 mW. The measured 1, changed
less than 1.3% for both pressures, thus proving
that the fitting method is accurate, and the heat-
ing due to the laser beams (which would change
the viscosity and affect 1) is negligible. We can
also calculate the diameter of the silica bead
from the 7, value at 99.8 kPa (/8). The obtained
diameter is 2.79 um. This is within the uncer-
tainty range given by the supplier of the 3.0-um
silica beads. We used this value in the calcu-
lation of MSD and normalized VACF.

The ability to measure the instantaneous ve-
locity of a Brownian particle will be invaluable
in studying nonequilibrium statistical mechanics
(19, 20) and can be used to cool Brownian mo-
tion by applying a feedback force with a direction
opposite to the velocity (21, 22). In a vacuum,
our optically trapped particle should be an ideal
system for investigating quantum effects in a
mechanical system (16, 23—25) because of its
near-perfect isolation from the thermal environ-
ment. Combining feedback cooling and cavity
cooling, we expect to cool the Brownian motion
of a bead starting from room temperature to the
quantum regime, as predicted by recent theoret-
ical calculations (24, 25). We have directly ver-
ified the energy equipartition theorem of Brownian
motion. However, we also expect to observe de-
viation from this theorem when the bead is cooled
to the quantum regime. The kinetic energy of the

bead will not approach zero even at 0 K because
of its zero-point energy. The rotational energy of
the bead should also become quantized.
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